Phosphoinositide 3-kinase signaling is essential for ABL oncogene-mediated transformation of B-lineage cells.
نویسندگان
چکیده
BCR-ABL and v-ABL are oncogenic forms of the Abl tyrosine kinase that can cause leukemias in mice and humans. ABL oncogenes trigger multiple signaling pathways whose contribution to transformation varies among cell types. Activation of phosphoinositide 3-kinase (PI3K) is essential for ABL-dependent proliferation and survival in some cell types, and global PI3K inhibitors can enhance the antileukemia effects of the Abl kinase inhibitor imatinib. Although a significant fraction of BCR-ABL-induced human leukemias are of B-cell origin, little is known about PI3K signaling mechanisms in B-lineage cells transformed by ABL oncogenes. Here we show that activation of class I(A) PI3K and downstream inactivation of FOXO transcription factors are essential for survival of murine pro/pre-B cells transformed by v-ABL or BCR-ABL. In addition, analysis of mice lacking individual PI3K genes indicates that products of the Pik3r1 gene contribute to transformation efficiency by BCR-ABL. These findings establish a role for PI3K signaling in B-lineage transformation by ABL oncogenes.
منابع مشابه
ABL oncogenes and phosphoinositide 3-kinase: mechanism of activation and downstream effectors.
The BCR-ABL oncogene is responsible for most cases of chronic myelogenous leukemia and some acute lymphoblastic leukemias. The fusion protein encoded by BCR-ABL possesses an aberrantly regulated tyrosine kinase activity. Imatinib mesylate (Gleevec, STI-571) is an inhibitor of ABL tyrosine kinase activity that has been remarkably effective in slowing disease progression in patients with chronic ...
متن کاملFunctional involvement of Akt signaling downstream of Jak1 in v-Abl-induced activation of hematopoietic cells.
Activation of intracellular signaling pathways is important for cellular transformation and tumorigenesis. The nonreceptor tyrosine kinases Jak1 and Jak3, which bind to the v-Abl oncoprotein, are constitutively activated in cells transformed with the Abelson murine leukemia virus. A mutant of p160 v-Abl lacking the Jak1-binding region (v-Abl Delta858-1080) has a significant defect in Jak/STAT (...
متن کاملMechanism of Activation and Downstream Effectors Oncogenes and Phosphoinositide 3-Kinase: ABL
The BCR-ABL oncogene is responsible for most cases of chronic myelogenous leukemia and some acute lymphoblastic leukemias. The fusion protein encoded by BCR-ABL possesses an aberrantly regulated tyrosine kinase activity. Imatinib mesylate (Gleevec, STI-571) is an inhibitor of ABL tyrosine kinase activity that has been remarkably effective in slowing disease progression in patients with chronic ...
متن کاملPim-1 and Pim-2 kinases are required for efficient pre-B-cell transformation by v-Abl oncogene.
The precise mechanisms by which Abl oncogenes transform hematopoietic cells are unknown. We have examined the role of Pim kinases in v-Abl-mediated transformation. In v-Abl transformants, expression of Pim-1 and Pim-2, but not Pim-3, is dependent on Abl kinase activity. Transformation assays demonstrate that v-Abl cannot efficiently transform bone marrow cells derived from Pim-1(-/-)/Pim-2(-/-)...
متن کاملComplementary functions of the antiapoptotic protein A1 and serine/threonine kinase pim-1 in the BCR/ABL-mediated leukemogenesis.
BCR/ABL oncogenic tyrosine kinase activates STAT5, which plays an important role in leukemogenesis. The downstream effectors of the BCR/ABL-->STAT5 pathway remain poorly defined. We show here that expression of the antiapoptotic protein A1, a member of the Bcl-2 family, and the serine/threonine kinase pim-1 are enhanced by BCR/ABL. This up-regulation requires activation of STAT5 by the signalin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 103 11 شماره
صفحات -
تاریخ انتشار 2004